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Abstract

A key challenge in supporting data-driven scientific ap-
plications is the storage and management of input and out-
put data in a distributed environment. In this paper, we de-
scribe a distributed storage middleware, based on a data
and metadata management framework, to address this prob-
lem. In this middleware system, applications define the
structure of their input and output data using XML schemas.
The system provides support for 1) registration, versioning,
management of schemas, and 2) management of storage,
querying, and retrieval of instance data corresponding to
the schemas in distributed databases. We carry out an ex-
perimental evaluation of the system on a set of PC clusters
connected over wide- and local-area networks.

1 Introduction

Advanced data acquisition technologies (e.g., high res-
olution MR scanners, high throughput microarray analyz-
ers, and advanced satellite sensors) have made significant
progress over the last decade. As a result, the amount and
types of data to be referenced and managed have rapidly
increased. Moreover, distributed computing technologies
have enabled applications to carry out simulation of large
and complex numerical models on machines in distributed
environments, generating large volumes of simulation out-
put to be analyzed. As a result, data-driven scientific ap-
plications have become an important application class that
can benefit from distributed storage and computing. Ex-
amples include applications that carry out parameter sweep
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studies [9], optimization strategies that evaluate hundreds
(even thousands) of scenarios in the course of searching for
the optimal solution to a given question [20, 18], and ap-
plications that consist of large workflows [3, 12, 10]. Input
datasets to these applications can be stored in databases or
files. A user-defined predicate specifies the set of data ele-
ments (as database rows, files, or parts of files) to be pro-
cessed. After the data is processed, output can be stored
in the environment as new datasets, which can be further
processed by other applications.

In order to support a scalable number of applications that
generate and reference various structures of different data
types and data dispersed across disparate locations, mecha-
nisms for communicating and sharing data are needed. The
environment must support the ability for applications and
services to store, discover, and retrieve data in a general
and flexible way. With such mechanisms, complex appli-
cations can be implemented from loosely coupled compo-
nents, services, or applications. Sharing of datasets and
documents among related applications can also be useful for
data provenance [12] and for efficient execution of multi-
query workloads [28, 2].

In this paper, we develop a data storage and management
middleware that is distributed – system components run on
networked collections of PCs and PC clusters, searchable
– input and output instance data is stored in databases cre-
ated from schemas and can be queried by applications, and
shareable – multiple instances of an application or mul-
tiple applications with different input and output schemas
can concurrently store and retrieve data in the system. The
middleware supports the ability to 1) create schemas which
describe the input data models used by the data analysis
application, 2) register these data models so that other re-
searchers can reference them in their applications, and in-
stance data based on these models can be queried, 3) man-
age and version the models as new data types are added
or deleted, and 4) integrate, create, and manage databases



that conform to these data models. In our system, the input
and output datasets of an application are defined by XML
schemas. The system provides a distributed storage and
data management structure for applications to query and re-
trieve input data (which may have been generated by in-
struments or other applications) and to store their outputs in
databases conforming to the schema definitions.

The system is implemented as a services-based middle-
ware framework, called Mobius [15]. The architecture of
Mobius is motivated by the activities of the Data Access and
Integration Services group at Global Grid Forum [4, 5] and
by earlier work [19]. Mobius consists of several services
and underlying protocols that support distributed creation,
versioning, management of data models defined by XML
schemas, on-demand creation of distributed databases, fed-
eration of existing databases, and querying of data in a dis-
tributed environment. We describe the implementation of
the system and present an experimental evaluation under
varying workload characteristics on a set of PC clusters con-
nected over local- and wide-area networks.

2 The Mobius Framework

Mobius consists of three core services: Global Model
Exchange (GME), Metadata and Data Instance Manage-
ment (Mako), and Data Translation Service (DTS). Mobius
services employ XML schemas to represent metadata def-
initions or data models and XML documents to represent
and exchange metadata instances or data instances. In this
paper, we provide a description of the GME and Mako ser-
vices that are relevant to our target application environment.
Further details on other aspects of Mobius can be found in
a previous work [15], in which we describe how the sys-
tem can be used for integration of data from disparate data
sources.

2.1 Global Model Exchange

The Global Model Exchange (GME) is responsible for
storing and linking data models as defined inside names-
paces in the distributed environment. The GME enables
other services to publish, retrieve, discover, deprecate, and
version metadata definitions. GME services are composed
together in a domain name server-like architecture repre-
senting a parent-child namespace hierarchy wherein par-
ents act as authorities for children and provide them with
a sub-namespace. When a schema is registered in GME,
it is stored in under the name and namespace specified by
the application and is given a version number. We refer to
the tuple consisting of the schema’s name, its namespace,
and its version number as the global name id (GNI) of the
schema.

The GME provides model version and model-to-model
dependency management. For instance, if a user service
publishes a model to the GME and later the model is mod-
ified and republished, the model will automatically be ver-
sioned. The GME protocol provides a mechanism for stat-
ing the exact version of the model that is requested. A
model can also contain types defined by other models or
references to types contained in other models, and can be
assured that the referenced entities exist. This reference
integrity might be considered the largest requirement for
a GME that the current use of a URL does not provide.
The role of the GME in the greater picture is to ensure dis-
tributed model evolution and integrity while providing the
ability for storage, retrieval, versioning, and discovery of
models of all shape, complexity, and interconnectedness in
a distributed environment. A future extension of the GME
service architecture would be to support semantic model
storage, versioning, and querying. With semantic model
support, one could imagine being able to pose the question,
”Are there any models published anywhere in the environ-
ment that have something to do with reservoir simulation?”.

2.2 Mako

Mako is a service that exposes data resources as XML
data services through a set of well-defined interfaces based
on the Mako protocol. A data resource can be a relational
database, an XML database, a file system, or any other data
source. Data resource operations are exposed through a set
of well-defined interfaces as XML operations. For exam-
ple, once exposed, a relational database would be queried
through Mako using XPath as opposed to querying it di-
rectly with SQL. Mako provides a standard way of interact-
ing with data resources, thus making it easy for applications
to interact with heterogeneous data resources.

2.2.1 Mako Architecture

Clients interact with Mako over a network; the Mako archi-
tecture illustrated in Figure 1 contains a set of listeners, each
using an implementation of the Mako communication inter-
face. The Mako communication interface allows clients to
communicate with a Mako using any communication pro-
tocol. For example, if the communication interface is im-
plemented using Globus [14] security, clients may commu-
nicate with Mako using the Globus Security Infrastructure
(GSI). Each Mako can be configured with a set of listeners,
where each listener communicates using a specified com-
munication interface.

When a listener receives a packet, the packet is mate-
rialized and passed to a packet router. The packet router
determines the type of packet and decides if it has a regis-
tered handler for processing a packet of that type. If such a



Figure 1. Mako Architecture

handler exists, the packet is passed on to the handler which
processes the packet and sends a response to the client.

2.2.2 Mako Protocol

The Mako protocol consists of a set of packet types that
enable clients and applications to interact with a Mako. This
section will present an overview of the relevant areas of the
Mako protocol.

Collection Management. In the context of XML
databases, the common nomenclature for referring to a
group of related instance documents is a Collection. This is
very similar to the relational database concept of a database.
The concept diverges slightly, in that collections can have
sub collections, and collections may not have a single
schema (or any at all) associated with them. The Mako pro-
tocol supports three collection management operations, cre-
ation of a collection, removal of a collection, and the ability
to get a list of sub collections for a given collection.

Schema Management. Each collection in Mako can be
restricted to accepting XML documents from a set of certain
types or namespaces. This is accomplished by specifying a
set of XML schemas which any submitted XML document
must be validated against. The Mako protocol provides a
method for adding and removing schemas to and from an
XML collection as well as a method for obtaining a list of
schemas that a collection supports.

Document Management. The Mako protocol defines
methods for submitting, updating, removing, and retrieving
XML documents. Upon submission, Mako assigns each en-
tity a unique identifier. Documents, or subsets of XML doc-
uments, can be retrieved by specifying their unique identi-
fier. Each element in an XML document is given an iden-

tifier, making any subset of a document uniquely address-
able. The Mako protocol also allows the level of retrieval to
be specified. For example, if we think of an XML document
as a tree, then given a unique identifier, one would be able
to specify how many levels of children should be included
in the materialization of the document. Elements contain-
ing children that are below the height specified would not
be included in the materialization, however references to
their immediate children would be included. This feature
becomes quite valuable when working with large datasets,
in that full documents do not need to be materialized just
to view partial results. It also allows one to build a demand
driven Document Object Model (DOM) on top of the pro-
tocol. In general such a feature improves application per-
formance by allowing the application to specify how data is
materialized.

XML documents can be removed by specifying their
unique identifier or by specifying an element identifying
XPath [6] expression. XML documents that reside in a
Mako can be updated using XUpdate1.

Querying. Mako currently provides query support
through the use of XPath [6]. XPath is a declarative lan-
guage for selecting subsets of XML documents’ elements,
attributes, and text sections. It is similar to SQL in that it
provides a facility for selecting data based on a set of cri-
teria. However, it differs from SQL in that it contains rich
facilities for expressing criteria in terms of the inherent hi-
erarchy associated with an XML document.

2.2.3 Mako Handlers

For each packet type in the Mako protocol, there is a cor-
responding handler to process that packet type. In order to
abstract the Mako infrastructure from the underlying data
resource, there is an abstract handler for each packet type.
Thus, for a given data resource, a handler extending the ab-
stract handler would be created for each supported packet
type. This isolates the processing logic for a given packet,
allowing a Mako to expose any data resource under the
Mako protocol. Our current Mako implementation con-
tains a handler to expose XML databases that support the
XMLDB API1. It also contains handler implementations to
expose MakoDB. MakoDB is an XML database built on top
of MySQL [21], and it is optimized for interacting in the
Mako framework. There are multiple reasons for building
our own XML database; the summary of them is that we
want to have total control of the data storage. This allows
us an efficient way to uniquely identify pieces of XML doc-
uments. That is, any node within an XML document can
be addressed as a separate XML document. Having this ca-
pability enables one to build XML documents containing
sub-pieces of existing XML documents. We refer to this

1http://www.xmldb.org



concept as virtual inclusion, which is discussed in the next
section. Technical details of MakoDB are outside the scope
of this paper and will be discussed in a forthcoming paper.

Data services can easily be exposed through the Mako
protocol by creating an implementation of the abstract han-
dlers. Since there is an abstract handler for each packet type
in the protocol, data services can expose all or a subset of
the Mako protocol. Once handler implementations exist,
Mako can be easily configured to use them. This is done
in the Mako configuration file, which contains a section for
associating each packet type with an appropriate handler.

2.2.4 Global Addressing and Virtual Inclusion

We mentioned earlier that Mako provides a method of
uniquely identifying elements contained in XML docu-
ments. In reality these elements are uniquely identified
across the collection that they reside in. Mako also pro-
vides a method of globally addressing XML elements. This
is done using the three tuple id, (Mako URI, collection, el-
ementId). Being able to globally address entities within
Mako provides several advantages; such as allowing data
to be federated across multiple Makos via virtual inclusion.

Virtual inclusion is a reference within an XML document
to another XML document. This means that Mako allows
XML documents to be created that may contain references
to existing XML documents or elements, both local and re-
mote. In this way, an XML document can be distributed and
stored across multiple Mako servers by storing subsections
of the document remotely and integrating them with refer-
ences. This ability is critical in enabling large data docu-
ments to be partitioned across a cluster while still maintain-
ing the single document semantics of a model.

2.3 Virtual Mako

Utilizing Mako’s component architecture, alternate pro-
tocol handlers can be installed in a Mako server to enable
it to utilize remote Mako instances. The Virtual Mako is a
collection of protocol handler implementations that extend
the operation of the data services to operate on an admin-
istrator defined set of remote Makos. It maps a number of
Virtual Collections to a set of remote collections. This sim-
plifies the client-side complexity of interfacing with multi-
ple Makos by presenting a single virtualized interface to a
collection of federated Makos.

3 Application Implementation and Execu-
tion

In our system, the structures of an application’s input and
output data are specified by XML schemas. The schema can
be the same as a schema already registered in the system, or

it can be created by versioning an already existing schema
by applying modifications to it. The schema can also be
a composition of new elements and references to multiple
existing schemas. The schemas are managed by Mobius
GME. For instance, if an application takes images as input,
an image data schema may define metadata associated with
an image, such as the type of the image, study id for which
this image was acquired, date and time of image acquisition,
etc. An instance of the schema corresponds to an image
dataset with images and associated image metadata stored
across multiple storage systems running data management
servers (i.e., Makos).

The requirement on application developers to define
schemas for their data types may at first seem like too much
of a burden. However, the XML schema definition language
provides a large number of primitive data types, which
makes the task of defining schemas for simple datasets triv-
ial. Furthermore, these simple types can easily be com-
posed to form common data structures which can be lever-
aged across multiple application schemas. It should also be
noted that many tools exist which can transform a sample
XML document into a corresponding XML schema which
can then be generalized to account for variances in the ex-
pected datasets.

An application using our system reads input datasets
conforming to some schema and generates output datasets,
again conforming to a schema. For each input dataset, one
or more selection criteria can be specified. The selection
criteria defines the subset of data to be processed from in-
put datasets and should be executed as a query into the
corresponding input datasets. In this paper, we do not ad-
dress the issues associated with allocation of resources, in-
stantiation of application instances on those resources, and
management of the execution of the application. A num-
ber of middleware tools and services exist for this pur-
pose [7, 8, 10, 14, 31] and can be used in conjunction with
our data management system. The application can be a par-
allel or sequential program, a component in a data process-
ing workflow, or a Grid or Web service. We assume that the
application runs on machines in a distributed environment
and interacts with schema management and data manage-
ment servers using Mobius protocols. In a cluster environ-
ment, multiple Mako servers can be instantiated on each
node, and one or more GMEs can be instantiated to manage
schemas. In some cases, multiple instances of an applica-
tion can be concurrently executed in the environment. For
example, if processing of an input element/file can be done
independent of processing of other elements, multiple in-
stances of the same application can be executed in order to
achieve high data processing throughput.

When the application (or an instance of the application)
outputs a data instance, it can send the instance to any Mako
server to which the application is authorized to write. The



output data instance identifies the GNI of the schema to
which the data adheres. When a Mako server receives a data
instance, it firsts checks if the schema is locally stored and a
database has already been created from this schema. If the
schema does not exist locally the Mako contacts a Mobius
GME to retrieve the corresponding schema definition asso-
ciated with the particular GNI. After the schema definition
is retrieved, it is cached locally and a database conforming
to the schema definition is created. Note that a Mako server
can control multiple databases distributed across multiple
machines. Hence, a schema can be instantiated on a dis-
tributed database. Once the database has been created, data
instances can be inserted into, retrieved from, updated, and
queried from the database.

An application programming interface allows for an ap-
plication to partition a large byte array into smaller pieces
(chunks), associate meta-data description with each piece
(represented by a schema), and distribute these pieces
across multiple, remote Mako servers. For example, if the
byte array corresponds to a large 2D image, each chunk
can be defined as a rectangular subsection of the image.
The meta-data associated with a chunk can be the bound-
ing box of the chunk, its location within the image, the
image modality, etc. The data can be distributed across
an application-specified set of Mako servers or by a Vir-
tual Mako server, which distributes the data using a data
declustering algorithm2 across multiple Mako servers. The
API also enables the application to build an index document
that contains the references to the chunks, and submit it to
a designated federation of Makos, using the Virtual Mako,
responsible for storing data index documents. When the ap-
plication wants to retrieve the byte array, it can query for
the index document or query chunks using the schemas as-
sociated with the chunks. When the index document is re-
trieved, the API allows the application to retrieve individual
chunks one by one, in groups, or completely reconstruct the
entire byte array.

4 Related Work

Several types of middleware systems have been devel-
oped for implementing and executing applications in dis-
tributed environments [10, 7, 26, 9, 12, 8, 14, 24, 13, 31].
The Everyware toolkit developed by Wolski et al. [30] en-
ables applications to transparently use computational re-
sources in the Grid. While Everyware targets compute-
intensive applications, our middleware is focused on storage
and management of metadata and data instances for persis-
tent data caching and sharing. The Storage Resource Bro-
ker (SRB) [26] provides unified file system-like interfaces

2Currently, round-robin, weighted round-robin (i.e., distribution of data
chunks to storage nodes based on their disk bandwidth), and random dis-
tribution schemes are supported as default strategies.

to distributed and heterogeneous storage systems. Unlike
SRB, we allow on-demand creation of databases and data
stored in Mobius can be searched using query predicates.
The Distributed Parallel Storage Server (DPSS) [16, 29]
project developed tools to use distributed storage servers
to supply data streams to multi-user applications in an In-
ternet environment. Unlike DPSS, which is designed as a
block-server, data in Mobius is managed as semi-structured
documents conforming to schemas. This allows for more
complex data querying capabilities, schema validation, and
database creation from complex schemas.

Andrade et al. [2] develops a distributed semantic
caching system that allows proxies interspersed between ap-
plication clients and application servers in order to speed
up execution of related queries by exploiting cached aggre-
gates. It also enables an application to explore the parallel
capabilities of application servers. ActiveProxy-G requires
integration of user-defined operators in the system to en-
able caching of application-specific intermediate results and
searching of cached results. Our middleware is designed
to work on data that can be described as a semi-structured
XML document with a schema.

The Chimera system [12] implements support for estab-
lishing virtual catalogs that can be used to describe how a
data product in an application has been derived from other
data. The system allows storing and management of infor-
mation about the data transformations that have generated
the data product. While Chimera is designed for manage-
ment of provenance of data generation, we focus on storage
and management of metadata and metadata instances.

Our system has some similarities to ”tuple spaces” [1]
in that data elements stored in the system could be treated
as highly descriptive tuples, and addressed by their content
and type. Additionally, the system supports distributed and
shared storage for data elements. Our data types and query-
ing capabilities, on the other hand, are extremely expres-
sive as we utilize the rich structural descriptions of XML
Schemas and query using advanced XML query languages.

The IBP [22] framework is a common framework for
storing and retrieving large amounts of data. IBP does have
some similarities to our infrastructure from the storage and
retrieval of possibly large data quantities with a uniform
protocol. IBP could be used as the storage and delivery pro-
tocol for large data objects which travel through our frame-
work. Distributed data storage, discovery, and retrieval are
also supported by distributed file systems and peer-to-peer
content delivery networks [17, 25, 27, 23]. Our work differs
in that the middleware system enables applications to de-
fine and publish complex data models in order to efficiently
store, query, reference, and create virtualized XML views
into distributed and interconnected databases.



5 Experimental Evaluation

We have carried out an experimental evaluation of our
middleware framework using 3 PC clusters.

The first cluster, OSUMED, is a 24 node cluster that con-
tains single processor nodes with 933MHz PIII processor,
512MB RAM, and single network port. The nodes are con-
nected to each other over a FastEthernet Switch. The second
one, DC, is a 5-node cluster switched with gigabit ethernet
and each node is a dual Xeon 2.4 Ghz processors, 2 GB ram,
and 360 GB disk. The third cluster, MOB, is an 8-node clus-
ter switched with gigabit ethernet. Each node of this cluster
has dual 64bit AMD Opteron processors, 8GB RAM, and
1.5TB disk. The MOB and DC clusters are connected to
each other over a Gigabit network. The connection between
the OSUMED cluster and the MOB and DC clusters is a
shared 100Mbit/sec network. In the experiments detailed in
this paper, one Mako server was executed on each node of
a cluster. One Global Model Exchange server was instanti-
ated in the environment.

5.1 Model Driven Database Creation

Database creation is a common interaction in an ad hoc
distributed data management system. The following set of
experiments benchmark model driven database creation us-
ing various sizes and shapes of models. The goal is to inves-
tigate the cost at the single server to create a database on the
fly based on a user defined model. All of the experiments
capture the total time to create the database from the model
and break down the cost into four categories: time taken for
the model to be read from the socket (Socket Read Time),
time taken to turn that model in the buffer into a schema
object model (Schema Object Model Time), time taken to
break down and insert the schema entities into the database
(Schema Insertion Time), time taken to extract the schema
and use it to build the table space for instance data storage
(Table Building Time). The summation of these categories
represents the total processing time. These trials where per-
formed on the 5-node Xeon cluster.

Figure 2 shows the cost of model driven database cre-
ation using models which vary in height, width, and size
(i.e., the number of children of an element, the number
of siblings of an element, and the number of elements in
the schema). The models vary from 1 to 1000 elements
stepping by an order of 10 each trial in either direction of
height, width, or height and width. The height models are
designed using an XML schema where the elements are ei-
ther nested, one inside the other, creating a deep model in
the case of height varying models, or siblings, one beside
the other, creating a wide model, in the case of width vary-
ing experiments. The graphs show that the model driven
database creation time grows respectively with the height
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Figure 2. The cost of on-demand database
creation from schemas provided by client ap-
plications.

or width of the model equally. The graph also shows that
the system is bound by the current speed of the table build-
ing code and schema model extraction code. Both of these
areas are currently unoptimized because they are not large
bottleneck areas when looking at the overall use of the sys-
tem. The data models that we see in most of our application
areas (e.g., image analysis applications) are on the order of
tens of complex entities per schema. We have also observed
that most applications do more reading and writing of data
compared with database creation. Nevertheless, we recog-
nize this as a performance bottleneck when using extremely
large data models and plan to optimize this in a future work
in order to support programmatically maintained data mod-
els which may grow to enormous bounds.

This set of model driven database creation tests conclude
that the Mobius Mako database creation cost is indepen-
dent of the shape of the schema, but is sensitive to its size.
Hence, a user can build a model of the data without worry-
ing about fitting the model to a certain shape and without
tuning the storage system in which they place the data, to
the shape of the model.

5.2 Data Submission, Retrieval and Query Exper-
iments

In our system, data is stored as XML documents in a
Mako server. In this set of experiments, we compare the
performance of MakoDB with two open source, widely
used XML databases, eXist [11] and Xindice [32]. The
experiments for the three databases were performed within
the Mako environment, thus using the MakoDB handlers
for MakoDB and by using the XMLDB handler implemen-
tation for Exist and Xindice. The experiments are designed
to show the cost of instance data submission, querying, and
retrieval as XML documents, where the XML document in-
stances are varied in size and shape according to the data



(a) (b)

Figure 3. Execution time for (a) data instance submission and (b) data instance retrieval, when the
document size is varied.

model to which they adhere. For the submission and re-
trieval experiments we used two data models. The first
model, Model A, contains a root element with ten children,
each with a child containing text. The second model, Model
B, is designed to show the cost of both depth and width. It
contains 10 elements, each with a single child, that in turn
contains a single child. This inheritance is repeated for 10
generations. For each model we generated instance docu-
ments of varying sizes (i.e., the size of the text in the docu-
ment) starting with 10K and going up to 10MB, increasing
size by a factor of ten. These trials where performed on the
5-node Xeon cluster. Due to space limitations, we display
results for Model B; we have observed similar trends with
Model A.

Figure 3 shows the results for instance submission and
retrieval. The results show that for instance submission
MakoDB achieves better performance than both Xindice
and eXist, especially as the size of the instance documents
grow. For MakoDB, most of this increase is because of the
increasing amount of data being stored in MySQL. We also
noticed an increase in execution time as the number of ele-
ments in the document is increased. This can be attributed
to several factors. First, since the documents are being vali-
dated against a schema, the more elements a document con-
tains the longer its validation takes. Second, each element
is modeled separately in the database, which increases the
number of database inserts with increasing number of ele-
ments. This cost is minimal in our experiments, is propor-
tional only to the number of elements, and does not increase
as the amount of data per element increases.

Similar to the submission results, MakoDB showed bet-
ter performance than both eXist and Xindice in instance re-
trieval (i.e., retrieval of the entire document) experiments.
For MakoDB, retrieval time increases as the number of

Figure 4. XPath Query Experiment.

elements is increased. Again, this can be attributed to
the increased number of tables that must be queried. For
MakoDB when we compared submission to retrieval, the
time to retrieve is higher than that of submission. This is be-
cause of the database query time that is required to rebuild
all of the relationships between elements in the requested
document, from their normalized form back to a material-
ized document.

To show the cost of performing an XPath query against
the three different database implementations, we used a data
model designed for representing medical images. The data
model contains demographical information and other meta-
data about the patient from which the image was taken, as
well as base64 encoded image data3 and a base64 encoded

3The Mobius protocol supports binary data, which would be used in
real applications as it eliminates the processing time needed for encod-
ing and decoding, as well as the 4x increase in data transmission, but for
these experiments we used only standard XML as binary objects are not
supported in most XML databases.
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ber of applications that read and write data is
varied.

thumbnail for each image. As an experiment we performed
an XPath query that returned all the thumbnail images in
the database. The thumbnails are located three levels deep
in the XML documents. For this experiment we varied the
number of documents in the database. As is seen in Fig-
ure 4, MakoDB achieves the best performance of the three
databases. MakoDB models each element in an XML doc-
ument as individual XML documents, thus making it easy
to locate and return subsets of XML documents.

5.3 Multi-client/multi-application Scaling Exper-
iments

This set of experiments is designed to evaluate the abil-
ity of the system to handle a multi-client environment with
different numbers of readers and writers spread across the
5-node Xeon cluster. In each experiment, a client sequen-
tially issues 1000 requests to either read or insert an XML
instance document of approximately 10 kilobytes, with 100
elements (adhering to a schema with one root element and
100 child elements). We present a variety of client config-
urations, showing the single machine, single process base
cases, and extending to a fully distributed collection of both
readers and writers. When multiple servers are instanti-
ated, each client writes documents to and requests docu-
ments from the servers in round robin fashion. The respec-
tive times of reading and writing are shown as the number of
clients, communicating with a single server and with mul-
tiple servers, is varied. It should also be noted that in this
set of trials, the nodes in the cluster are used as both servers
and clients, but clients never utilized local host servers.

Figure 5 presents the average response time per request,
observed by the client. A result which may not be self-
evident is the fact that response time on a single server for
10 readers (0.92 seconds) is less than 10 times the 1 reader
case (1.3 seconds). This is due largely to the fact that in the
single reader case, since the requests are submitted serially,
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Figure 6. Average job execution time and
batch execution time with varying number of
client programs.

by a single client thread, the server can only process a sin-
gle request at a time. In the distributed, 10 reader case, the
10 clients (running on 5 nodes) can all submit their requests
in parallel, thus allowing the multi-threaded server to pro-
cess requests concurrently, and thus utilize both CPUs on a
server node.

The graph also shows that the response time for individ-
ual requests is greatly improved by adding more servers.
That is, by using 5 servers instead of 1, we see an improve-
ment of nearly 5 times. This result is echoed in Figure
6, where the average per client completion time is shown,
along with the total time to complete all clients. An ad-
ditional aspect shown in the figure is the time to complete
all clients is very close to the average time per client. This
shows that the servers are able to service client requests in
a fair manner, and all similar clients complete at nearly the
same time.

5.4 Multi-Cluster Submission and Retrieval Ex-
periments

This set of experiments was intended to evaluate the Mo-
bius protocol, the Mako protocol, and MakoDB in a multi-
user, multi-cluster environment. The experimental setup
places servers and varying numbers of clients distributed in
a balanced fashion across the three clusters. The clients are
each assigned a server to make 1000 serial requests each of
size 10KB either reading or writing. The client and server
may or may not exist on the same cluster as the clients are
randomly assigned to nodes and servers across the three
clusters in order to simulate a dynamic multi-user environ-
ment. The trials are ran in three different scenarios: clients
only reading, clients only writing, and clients half of which
are reading and the other half writing. In these experiments,
there were 10 servers, each of which is assigned to varying
numbers of clients.

Figure 7(a) shows the response times observed by clients
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Figure 7. (a) Results for instance submission and retrieval with varying number of clients. All the
clients write to the servers concurrently and then request documents. (b) Results when half of the
clients submit and concurrently the other half retrieve documents with varying number of clients.
Both graphs show 2nd degree polynomial fit lines.

reading and writing to the servers. The reading tests were
ran independently from the writing tests. That is, all the
clients first wrote their documents to the servers. Then, in
the second stage, all the clients requested documents from
the servers. The time shown is the normalized average re-
sponse time per request (unit work) as the number of clients
is doubled each trial – that is, the normalized response time
is equal to the maximum execution time across clients di-
vided by the total number of requests. The graph shows the
ability to complete a request in a multi-user environment,
as we increase the number of clients. The average response
time decreases until the servers are saturated and then be-
gins to rise. The graph shows the optimal location occurs
around 24 clients4.

Figure 7(b) shows the response times when clients read
and write simultaneously to the servers. In these trials the
readers and writers are ran in parallel and are competing for
resources on the clusters. Similar to Figure 7(a), the time
shown is the normalized average response time per request
(unit work) as the number of clients is doubled each trial. As
is seen from the figure, the average response time decreases
until an optimal point, then begins to rise. The graph shows
the optimal client load for this configuration is around 48
clients.

In these trials, we observed that in the cases where read-
ing and writing trials are run independent of one another, on
average the writing clients incur longer response times and
do not benefit from parallelism as much as reading clients.
When reading and writing are executed concurrently, ini-
tially reading clients observe longer response times than
writing clients. However, as more clients are added, even-
tually the writing clients start to observe longer response

4We also experimented with 5 servers. The optimal location was 12
clients in that case. A configuration with fewer servers is expected to sat-
urate faster than one with more servers, since each server has to interact
with more clients.

times. These effects were even more evident in the 5 server
trials, as writing client response times overtook reader client
times at around 48 clients. We attribute this behavior to
locking overheads in MySQL when concurrent updates to
the database are executed and to the resource contention of
multiple threads on the server which are processing incom-
ing requests. We plan to carry out more detailed examina-
tion of potential reasons for the observed system behavior
and associated overheads.

6 Conclusions

We have presented a middleware system that provides
support for management of metadata definitions (defined as
XML schemas) and efficient storage and retrieval of data in-
stances in a distributed environment. The system provides
distributed, searchable, and shareable persistent storage for
applications. Our initial experimental evaluation shows that
the middleware system scales well when the complexity
of schemas, data size and the number of clients (up to 96
clients have been tested) are increased. Under multi-client
workloads, the system can serve client requests in a fair
manner. As a result, all similar clients complete at nearly
the same time. Our preliminary results show that the pro-
posed system can provide an efficient mechanism for data-
driven applications to cache, share, and asynchronously
communicate data in a distributed environment.
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